Products

Zoral Decision Engine

November 9, 2016
“The second your customer arrives on your website you need to start making decisions...”

Whether selling via a website or app, you need to respond immediately to each step of the journey. You need to “see” your customer, understand who they are, collect the right data, evaluate their needs, detect anomalous behavior, assess risk / pricing / product / affordability, dynamically adapt the customer journey and make many other decisions... and all this in real-time. Only then can you optimize your service and profitability.

To do all this and more, Zoral has developed one of the world’s most advanced, intelligent decision engines Zoral Decision Engine (ZDE).

ZDE - an essential component for digital products

In many ways selling digitally is no different to selling face to face. You need to understand as much as possible about your customer and ask the right questions. Then, you can continually adapt your approach as you learn more and make consistent, accurate decisions. ZDE is an essential component to solving this problem.

There are many decision engines in use. However, most were designed and developed prior to the mass sale of financial products via the Internet. There was no need to acquire massive amounts of heterogeneous data, (much unstructured), and react instantly, in a complex, non-linear way. Now there is. So Zoral produced ZDE, which was designed and developed from the outset to cope with these issues.

ZDE is a SMART system. It captures and intelligently processes a huge range of data in real-time. This includes application, third party, behavioral, social, geolocation, financial, bureau, MNO digital fingerprint, imaging, digitized speech, IoT and many other types of data. ZDE both uses and enriches this data. It allows the non-technical user to define complex workflows, rules logic and executes real-time decisions. These can be used to adapt the customer journey in real time and progressively react in line with the evolving customer profile.

ZDE not only makes accurate, personalized decisions, but also automates previously manual processes. This is vital if your digital product is to scale efficiently and be cost effective.

Decisions are simple but the process is complex

When selling digitally, you need to make many automated, reliable decisions such as...,

ZDE is SMART. It has the capability to answer these questions in real-time. It dynamically computes and executes the results of intelligent workflows and drives the customer journey across all digital touchpoints.

However, the problem is more complex than producing just a series of scores or “YES/NO” answers. You need to balance or calibrate all of the above in combination, in real time. Only then can you achieve optimum, portfolio results.

ZDE allows you to set your target, KPI’s. Then, it intelligently balances the above factors to optimize portfolio performance an profitability. This is another advantage you gain by using an artificially intelligent, SMART system.

84%
Reduction in manual effort in underwriting
SME loans
(Finance Corporation, North America)
65%
Reduction in manual effort in fraud management
(Consumer credit Australasia)
22%
Reduction in default rate
(Consumer credit UK)

Things change...

Life would be easier if things stood still, but they don’t. Marketing and other factors change the demographic of people arriving at your website and app. Competitive response changes regularly, as do fraud methodology, regulatory requirements, data quality and many other factors. Some changes are sudden and unpredictable. So models, rules and algorithms that worked yesterday may not be optimal today.

This highlights another, essential aspect of a SMART system. It learns and adapts. ZDE and ZML have sophisticated, built in machine learning capabilities that help address these issues. They can react and adapt to changing business needs, priorities and requirements.

ZDE allows you to respond rapidly, without the need for costly and time consuming development. For example,

ZDE also has a wide range of facilities for the technical user, including:

Zoral Decision Engine Environment

ZDE - highly scalable, low latency, adapted for business users

A key feature of any decision engine is ease of use. Business users should be able to easily/quickly capture the logic underlying a business’ operation. In ZDE this is done by creating, testing and managing executable business rules in a human understandable form or graphical notation. This can be done without the need for IT involvement. The order of execution and optimization of rules and workflows is automatically resolved, so is not dependent on business user ability to create optimal logic. Commit or a decision boundary in ZDE workflows can be complex, and is determined and resolved automatically at run time, using advanced decision cost optimizer, by the Zoral Decision Engine (ZDE).

ZDE can handle each client/request as it arrives, or via micro-batches. ZDE does this with very low latency and high throughput for streaming responses / decisions / actions. Additionally, ZDE can automatically distribute clients/requests/work across a clustered, runtime environment. It has a fully extensible and programmatic approach to AI/ML analytics and supports unstructured, device, social, 3rd party, behavioral data, so can deliver a low-latency, stream-decisioning solution.

The ZDE cluster consists of number of components. Each component is designed to perform a specific set of functions. This design separates functions and simplifies the overall system. ZDE components are fault-tolerant and can operate concurrently and independently of each other. This is important so that intra-cluster communication failures have minimal impact on data availability and decisioning.

ZDE solves complex, real-time, data analysis, data verification and optimized decisioning problems.

An optional Micro Batch Proxy server can be configured providing a vectorised operational mode. The Micro Batch Proxy server component of ZDE can be configured with user defined frequency or default buffer size. The Micro Batch Proxy can periodically flush its buffer to the Decision Engine server instance, while at the same time log the incoming, new ZDE requests to a new buffer. ZDE components can be configured on the same server or further scaled on separate server instances as shown above.

Rules, workflows, metadata, and configurations are dynamically read and updated from the ZDE Database, which is replicated to SQL Server, stored in Riak Database and further scaled with in-memory cache to minimize the latency between ZDE and its database component.

The Data Provider Balancer can be configured as an optional, separate component server instance. It distributes work across a number of different types of ZDE Data Provider components. It can capture different types of data. These can be based on pending/to be evaluated clients/requests/decisions and used as inputs into the rules Evaluation Engine. This can include, MNO data, behavioral data, 3rd party data, unstructured data, social data etc.

Data Providers themselves can originate from Big Data platforms, such as behavioral data streaming from Zoral BDW/Hadoop/Spark or from ElasticSearch query output. Each type of Data Provider component can be scaled across one or more servers and optionally vectorised. A similar load balancer deployment scheme can be configured to scale analytical servers that perform model evaluations in R or SPARK or PMML or Python or NLP or C++ (e.g. executing models from the Zoral Model Library), for example:

Zoral Decision Engine Deployment

ZDE Management Studio

ZDE has a comprehensive management studio where business users can capture/define, view, edit and monitor a wide range of functions, including,

The Management Studio can handle multiple, simultaneous business users and can be scaled across one or more servers. In addition, ZDE can be configured to work with or as extension of a number of enterprise architecture components to include Enterprise Risk Management Systems, Core Banking Systems, Payment Systems, Internet Banking, Personal Financial Management Systems (PFM), CRM, Billing, ERP, LMS, Marketing Systems, Collection Systems, Application Servers, Settlement Systems, etc.

Decision Workflow Management

Zoral decision engine example workflowZDE provides powerful, workflow management tools. These are graphical and simple to use for non-technical users. Functions are sophisticated but complexity is handled automatically by ZDE itself rather than requiring deep technical understanding. An example is shadow testing of new decision workflows. Additional versions of the workflow can be executed in “shadow” mode alongside tested, production workflows, without affecting actual decisions.

Other features and functionality

ZDE interacts securely, synchronously and asynchronously with web/mobile enabled devices / applications including Web/Mobile apps, Email, SMS, IVR, USSD, GPS, etc. This includes internal business ‘CORE’ or ‘Back Office’ processing systems, where ZDE can improve and further automate and scale business processes and help reduce operating costs.

ZDE has data/event notification integration points to other enterprise software components, (such as PFM, CRM, LMS, G/L, Billing, ERP, B2C Mobile Apps, Core Banking platforms, etc.). These are API based and are flexible, scalable and bi-directional.

ZDE scales to billions of customer / application/ device interactions per day. It provides low-latency response, (latency is a configurable/granular parameter).

ZDE’s component architecture makes it highly scalable. It is also simple to upgrade/replace sub-components, (e.g. change/add the rules language, rules evaluation engine, execution optimizer, UI, Storage, Scheduler, Analytical Libraries, Data/Event Integration Bus, Data Validation Engine, Workflow Management, Metadata Management, Data Provider Engine, Analytics Engine, Configuration Engine, Monitoring, Alert Engine, etc.)

ZDE integrates with a wide range of 3rd party data providers worldwide. It has re-usable, intelligent 3rd party data/application adapters.

ZDE is capable of handling extremely large, “Big Data” volumes.

ZDE provides traceability, audit and control of decisions made (e.g. for compliance, audit of Government Regulated processes)

ZDE has extensive data validation and verification logic, in support of intelligent STP, including:

  • Identity and KYC verification
  • Company verification
  • Credit Card verification
  • Bank details verification
  • Employment/Employee verification
  • Personal information verification
  • Geolocation data verification
  • Document verification / Image Analysis
  • Financial statements verifications
  • Blacklists usage
  • Digital information verification (device data, click level behavioral data, for anti-spoofing)
  • Social networks data cross-validation

ZDE allows you to define alternative verification processes or models, as there may be multiple ways to perform the same verification or model. Alternative implementations can be used as a backup or a redundancy measure when a primary verification solution fails to run, (e.g. a 3rd party data source is down, an outcome is inconclusive, to improve verification or improve model confidence.)

ZDE architecture is such that it effectively handles attacks such as serial, linked and velocity frauds.

ZDE is designed for use with advanced analytical methods, such as text mining, non-linear AI/ML functions, combining or boosting of models.

It provides the ability to measure, scale and monitor deployed AI/ML (PMML, R, SPARK, Python, NLP, C++ etc.) model performance.

As well as third party language/tool compatibility, ZDE has its own powerful, easy-to-use, rules language that can be utilized by business users to capture their know-how and business intelligence. Version control is efficient and automated. Users can easily build comprehensive business process work flows, incorporating AI/ML models as extensible functions in the rules language.

ZDE can operate in batch, micro-batch or real-time mode. It allows atomic decisions, (a set of rules), to have their own granular set of conditional thresholds and decision timeouts.

Work flows can be saved as intelligent, version controlled templates to be re-used/modified, across geographies and other business functions.

Users can easily test any part of decisioning logic, including ZDE’s built-in unit testing, batch testing, automated/regression testing, (in support of SDLC best-practice).

ZDE has built in A/B testing for experimentation, digital product innovation and logic optimization.

ZDE allows shadow testing of new decision workflows. Additional versions of the workflow can be executed in a shadow mode alongside tested, production workflows, without affecting the actual decisions.

ZDE / ZML also contains a scalable analytical library and analytical tools (e.g. R, PMML, SPARK, NLP, SAS, Python, C++) to enable business KPI optimization.

ZDE has advanced analytical reporting, BI and data visualization capabilities. It can be integrated as a SMART component and a real-time input source to the enterprise, Big Data architecture.

Feature summary

This document is provided by Zoral Limited and its affiliated companies (“Zoral”) for informational purposes only, without representation or warranty of any kind. Zoral shall not be liable for errors or omissions with respect the information contained in this document. Product Specifications are subject to change without notice. The only warranties for Zoral products and services are those that are set forth in the express warranty statements in Zoral’s standard contracts for such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

© Zoral Limited 2017