Zoral Decision Engine
“The second your customer arrives on your website you need to start making decisions...”
Whether selling via a website or app, you need to respond immediately to each step of the journey. You need to “see” your customer, understand who they are, collect the right data, evaluate their needs, detect anomalous behavior, assess risk / pricing / product / affordability, dynamically adapt the customer journey and make many other decisions... and all this in real-time. Only then can you optimize your service and profitability.
To do all this and more, Zoral has developed one of the world’s most advanced, intelligent decision engines Zoral Decision Engine.
Zoral DE - an essential component for digital products
In many ways selling digitally is no different to selling face to face. You need to understand as much as possible about your customer and ask the right questions. Then, you can continually adapt your approach as you learn more and make consistent, accurate decisions. Zoral DE is an essential component to solving this problem.
There are many decision engines in use. However, most were designed and developed prior to the mass sale of financial products via the Internet. There was no need to acquire massive amounts of heterogeneous data, (much unstructured), and react instantly, in a complex, non-linear way. Now there is. So Zoral produced Zoral DE, which was designed and developed from the outset to cope with these issues.
Zoral DE is a SMART system. It captures and intelligently processes a huge range of data in real-time. This includes application, third party, behavioral, social, geolocation, financial, bureau, MNO digital fingerprint, imaging, digitized speech, IoT and many other types of data. Zoral DE both uses and enriches this data. It allows the non-technical user to define complex workflows, rules logic and executes real-time decisions. These can be used to adapt the customer journey in real time and progressively react in line with the evolving customer profile.
Zoral DE not only makes accurate, personalized decisions, but also automates previously manual processes. This is vital if your digital product is to scale efficiently and be cost effective.
Decisions are simple but the process is complex
When selling digitally, you need to make many automated, reliable decisions such as...,
- do we want to pay for this lead?
- is it likely to turn into a sale and a profitable customer?
- which product should we sell?
- if they don’t qualify for product A, should we sell product B?
- what is the risk?
- how should we price it?
- should we underwrite this client?
- will they pay on time?
- will they renew or churn?
- are they who they say they are?
- what is their likely life time value?
- what is their social and behavioral value?
- is this a fraud?
- based on customer behavior, what is our next-best-action?
Zoral DE is SMART. It has the capability to answer these questions in real-time. It dynamically computes and executes the results of intelligent workflows and drives the customer journey across all digital touchpoints.
However, the problem is more complex than producing just a series of scores or “YES/NO” answers. You need to balance or calibrate all of the above in combination, in real time. Only then can you achieve optimum, portfolio results.
Zoral DE allows you to set your target, KPI’s. Then, it intelligently balances the above factors to optimize portfolio performance an profitability. This is another advantage you gain by using an artificially intelligent, SMART system.
SME loans
Things change...
Life would be easier if things stood still, but they don’t. Marketing and other factors change the demographic of people arriving at your website and app. Competitive response changes regularly, as do fraud methodology, regulatory requirements, data quality and many other factors. Some changes are sudden and unpredictable. So models, rules and algorithms that worked yesterday may not be optimal today.
This highlights another, essential aspect of a SMART system. It learns and adapts. Zoral DE and Zoral ML have sophisticated, built in machine learning capabilities that help address these issues. They can react and adapt to changing business needs, priorities and requirements.
Zoral DE allows you to respond rapidly, without the need for costly and time consuming development. For example,
- Zoral DE / Zoral ML contain self learning functions, and supervised machine learning / artificial intelligence
- Zoral DE / Zoral ML / Zoral BDW have built in anomaly detection and management
- Zoral DE intelligent workflows can be easily reconfigured by business users
- thresholds affecting Zoral DE decisions can be changed and modeled by business users
- new intelligent workflows can be added to address special cases or new products
- Zoral DE is simple to customize according to business needs
- Zoral DE provides capabilities to design and model changes to rules and models
- Zoral DE is extensible, internal and 3rd party analytical models, libraries and algorithms can be easily added and incorporated into Zoral DE intelligent workflows
- it provides development, test, experimental and deployment environments
Zoral DE also has a wide range of facilities for the technical user, including:
- facilities for complex information extraction and verifications workflows
- extend and customize workflow input and workflow output data transfer protocols and objects
- facilities to extend Zoral DE data sources. Implement and register external data providers with their data transfer objects and protocols
- implement workflow data dependencies
- create and register workflow runtime version and configuration
- Implement new dashboards, reports and graphs or integrate with existing BI
- Configuration of scalability, fault-tolerance and deployment parameters
- Configuration of user and granular security permissions
Zoral DE - highly scalable, low latency, adapted for business users
A key feature of any decision engine is ease of use. Business users should be able to easily/quickly capture the logic underlying a business’ operation. In Zoral DE this is done by creating, testing and managing executable business rules in a human understandable form or graphical notation. This can be done without the need for IT involvement. The order of execution and optimization of rules and workflows is automatically resolved, so is not dependent on business user ability to create optimal logic. Commit or a decision boundary in Zoral DE workflows can be complex, and is determined and resolved automatically at run time, using advanced decision cost optimizer, by the Zoral Decision Engine.
Zoral DE can handle each client/request as it arrives, or via micro-batches. Zoral DE does this with very low latency and high throughput for streaming responses / decisions / actions. Additionally, Zoral DE can automatically distribute clients/requests/work across a clustered, runtime environment. It has a fully extensible and programmatic approach to AI/ML analytics and supports unstructured, device, social, 3rd party, behavioral data, so can deliver a low-latency, stream-decisioning solution.
Zoral DE cluster consists of number of components. Each component is designed to perform a specific set of functions. This design separates functions and simplifies the overall system. Zoral DE components are fault-tolerant and can operate concurrently and independently of each other. This is important so that intra-cluster communication failures have minimal impact on data availability and decisioning.
Zoral DE solves complex, real-time, data analysis, data verification and optimized decisioning problems.
An optional Micro Batch Proxy server can be configured providing a vectorised operational mode. The Micro Batch Proxy server component of Zoral DE can be configured with user defined frequency or default buffer size. The Micro Batch Proxy can periodically flush its buffer to the Decision Engine server instance, while at the same time log the incoming, new Zoral DE requests to a new buffer. Zoral DE components can be configured on the same server or further scaled on separate server instances as shown above.
Rules, workflows, metadata, and configurations are dynamically read and updated from the Zoral DE database, which is replicated to SQL Server, stored in Riak Database and further scaled with in-memory cache to minimize the latency between Zoral DE and its database component.
The Data Provider Balancer can be configured as an optional, separate component server instance. It distributes work across a number of different types of Zoral DE data provider components. It can capture different types of data. These can be based on pending/to be evaluated clients/requests/decisions and used as inputs into the rules Evaluation Engine. This can include, MNO data, behavioral data, 3rd party data, unstructured data, social data etc.
Data Providers themselves can originate from Big Data platforms, such as behavioral data streaming from Zoral BDW/Hadoop/Spark or from ElasticSearch query output. Each type of Data Provider component can be scaled across one or more servers and optionally vectorised. A similar load balancer deployment scheme can be configured to scale analytical servers that perform model evaluations in R or SPARK or PMML or Python or NLP or C++ (e.g. executing models from the Zoral Model Library), for example:
Zoral Decision Engine Management Studio
Zoral DE has a comprehensive management studio where business users can capture/define, view, edit and monitor a wide range of functions, including,
- business rules,
- models,
- workflows,
- configurations,
- security permissions,
- data sources,
- testing,
- audits,
- reports,
- and many other functions.
The Management Studio can handle multiple, simultaneous business users and can be scaled across one or more servers. In addition, Zoral DE can be configured to work with or as extension of a number of enterprise architecture components to include Enterprise Risk Management Systems, Core Banking Systems, Payment Systems, Internet Banking, Personal Financial Management Systems (PFM), CRM, Billing, ERP, LMS, Marketing Systems, Collection Systems, Application Servers, Settlement Systems, etc.
Decision Workflow Management
Zoral DE provides powerful, workflow management tools. These are graphical and simple to use for non-technical users. Functions are sophisticated but complexity is handled automatically by Zoral DE itself rather than requiring deep technical understanding. An example is shadow testing of new decision workflows. Additional versions of the workflow can be executed in “shadow” mode alongside tested, production workflows, without affecting actual decisions.
Other features and functionality
Zoral DE interacts securely, synchronously and asynchronously with web/mobile enabled devices / applications including Web/Mobile apps, Email, SMS, IVR, USSD, GPS, etc. This includes internal business ‘CORE’ or ‘Back Office’ processing systems, where Zoral DE can improve and further automate and scale business processes and help reduce operating costs.
Zoral DE has data/event notification integration points to other enterprise software components, (such as PFM, CRM, LMS, G/L, Billing, ERP, B2C Mobile Apps, Core Banking platforms, etc.). These are API based and are flexible, scalable and bi-directional.
Zoral DE scales to billions of customer / application/ device interactions per day. It provides low-latency response, (latency is a configurable/granular parameter).
Zoral DE’s component architecture makes it highly scalable. It is also simple to upgrade/replace sub-components, (e.g. change/add the rules language, rules evaluation engine, execution optimizer, UI, Storage, Scheduler, Analytical Libraries, Data/Event Integration Bus, Data Validation Engine, Workflow Management, Metadata Management, Data Provider Engine, Analytics Engine, Configuration Engine, Monitoring, Alert Engine, etc.)
Zoral DE integrates with a wide range of 3rd party data providers worldwide. It has re-usable, intelligent 3rd party data/application adapters.
Zoral DE is capable of handling extremely large, “Big Data” volumes.
Zoral DE provides traceability, audit and control of decisions made (e.g. for compliance, audit of Government Regulated processes)
Zoral DE has extensive data validation and verification logic, in support of intelligent STP, including:
- Identity and KYC verification
- Company verification
- Credit Card verification
- Bank details verification
- Employment/Employee verification
- Personal information verification
- Geolocation data verification
- Document verification / Image Analysis
- Financial statements verifications
- Blacklists usage
- Digital information verification (device data, click level behavioral data, for anti-spoofing)
- Social networks data cross-validation
Zoral DE allows you to define alternative verification processes or models, as there may be multiple ways to perform the same verification or model. Alternative implementations can be used as a backup or a redundancy measure when a primary verification solution fails to run, (e.g. a 3rd party data source is down, an outcome is inconclusive, to improve verification or improve model confidence.)
Zoral DE architecture is such that it effectively handles attacks such as serial, linked and velocity frauds.
Zoral DE is designed for use with advanced analytical methods, such as text mining, non-linear AI/ML functions, combining or boosting of models.
It provides the ability to measure, scale and monitor deployed AI/ML (PMML, R, SPARK, Python, NLP, C++ etc.) model performance.
As well as third party language/tool compatibility, Zoral DE has its own powerful, easy-to-use, rules language that can be utilized by business users to capture their know-how and business intelligence. Version control is efficient and automated. Users can easily build comprehensive business process work flows, incorporating AI/ML models as extensible functions in the rules language.
Zoral DE can operate in batch, micro-batch or real-time mode. It allows atomic decisions, (a set of rules), to have their own granular set of conditional thresholds and decision timeouts.
Work flows can be saved as intelligent, version controlled templates to be re-used/modified, across geographies and other business functions.
Users can easily test any part of decisioning logic, including Zoral DE’s built-in unit testing, batch testing, automated/regression testing, (in support of SDLC best-practice).
Zoral DE has built in A/B testing for experimentation, digital product innovation and logic optimization.
Zoral DE allows shadow testing of new decision workflows. Additional versions of the workflow can be executed in a shadow mode alongside tested, production workflows, without affecting the actual decisions.
Zoral DE / Zoral ML also contains a scalable analytical library and analytical tools (e.g. R, PMML, SPARK, NLP, SAS, Python, C++) to enable business KPI optimization.
Zoral DE has advanced analytical reporting, BI and data visualization capabilities. It can be integrated as a SMART component and a real-time input source to the enterprise, Big Data architecture.
Feature summary
- Highly scalable, low latency, fault-tolerant microservices architecture. Supports cloud or on-premises deployment. Easily integrates to multiple core banking systems.
- Provides the ability to easily define, brand, create and customize innovative, extensible digital products and customer journeys across all customer touchpoints, across all digital channels (Mobile, Web, Chat, IVR, SMS, email, Social) by business users.
- Provides Integrated, extensible reference data and customer 360 view profile management.
- Supports multiple digital financial products and services across organizational and geographical locations as one decisioning platform.
- Provides the ability easily to automate intelligently and personalize complex business processes across products, organizations and channels using advanced analytics and AI.
- Enables comprehensive credit policy rules management and implementation of robo underwriter across products.
- Provides extensive Integration with third-party data providers, credit bureaus.
- Provides decision workflow and sub-workflows versioning and language localization.
- Designed for business, data science users – provides a visual no code/low code decisioning logic platform with full data and rule usage, dependency traceability across all decisioning logic.
- Provides advanced AI models and scorecards (zoral model library, Spark, Python, R models, PMML models, ability to create and deploy AI models directly in the Decision Engine).
- Integrates with zoral behavioural data warehouse, zoral model library and zoral platform.
- Retains decision data context and audit trail for compliance and analytics.
- Provides data analysis / extensive AI modelling capabilities, e.g. batch testing and A/B sampling. Ability to implement rapidly and evaluate champion challenger business strategies across all decisioning points.
- Provides Business intelligence and configurable dashboard.
- Ability to implement a variety of modelling techniques (rules, statistical, AI/ML complex techniques, and intelligent workflows).
- Handles a wide range of Big Data sources, including behavioural, social, device, unstructured, application, MNO, OCR, third party and many others.
- Integration to zoral social data extraction service (SDES), sentiment analysis and entity extraction.
- Cost- and performance-based execution optimization for reduced, third party data costs.
- Workflow and thresholds configuration by business users.
- Logical separation of data retrieval from data analysis and parallel data retrieval.
- Versioning of all changes.
- Easy deployment of AI models.
- Batch runs, configurable rule based scheduling and what-if simulation based on historical/synthetic data.
- Provides advanced data table, no code parameters to sub workflows, simplifying complex risk management automation.
- GraphQL and Odata API to provide decision access and runtime data.
- Flexible storage type (SQL Server / NoSQL / Others).
- Flexible and secure RPC/messaging transport.
- WCF for synchronous calls.
- RabbitMQ, Kafka for messaging.
- Other protocols/transport easily integrated.
- Provides built-in decisioning and automation logic Integration and unit testing.
- Enables batch, micro batch and real time processing of complex decisions.
- Provides sophisticated visual business rules definition/decisioning logic with extensive no-code, low code functionality, (e.g. beyond simple tree structures, decision tables, forward and backword rule chaining). Data and Even Driven Decisioning capabilities and AI.
- Ultra-high performance enabling intelligent STP and complex decisioning using Big Data.
- Unit and batch and visual testing tools in support of best-practice decisioning, QA and release management.
- Fully Extensible models, sub-workflows, workflow steps and functions library.
- Easily integrates to UI, Chat, IVR, Mobile apps, Core Banking System, Enterprise Risk Management Systems, Payment Systems, Internet Banking Systems, LMS, CRM, OCR, Social Platforms, Email, SMS, DW/BI, BDW, Multiple DBMS, Big Data Architecture, Sentiment Analysis Engine, Alert and Notification Systems, Twilio, Docusign, FTP, Messaging Services, HTTPS, Webhooks, Black Lists, AML and Fraud Management Systems, Collections, etc.
- SDLC engineering best-practice toolset: version control, workflow, enterprise enabled, audit-trail, monitoring/reporting, built-in analytics library, encapsulation of decisioning logic, generates extensive documentation of all decisioning logic and automation.
- Scales across multiple UI platforms, channels and back-end infrastructures.
- Supports long running, intelligent workflows.
- Provide configurable dashboard and dashboard widgets to monitor KPIs and performance.
- Provides standard and customized reporting.
- Audit and user/GDPR and security management. Single Sign On Support.
- Ability to define custom workflow data model.
- Pre-built and custom data providers.
- Provides sub-workflows, functions and models to share logic between workflows.
- Configure multiple product settings via ZDE UI rules or XML files, utilizing GIT or built-in version control systems.
- Create verification processes that include multiple controls and sign-off procedures.
- Provides configurable parallel execution of external data providers to reduce automation latency.
- Cost/time execution optimization for workflows, based on statistics and costs parameters.
- Reusable data providers.
- Provides both asynchronous event driven and synchronous decision logic execution (e.g. to accommodate serial fraud detection/prevention automated decisioning logic etc.)
- Supports different communication patterns for third-party integration.
- Provides data quality management capabilities.